Python Bokeh is one of the best Python packages for data visualization. Today we are going to see some Python Bokeh Examples. I have also provided the Python Bokeh project source code GitHub. Learn this easy visualization tool and add it to your Python stack.
What is Python Bokeh?
Python Bokeh is a data visualization tool or we can also say Python Bokeh is used to plot various types of graphs. There are various other graph plotting libraries like matplotlib but Python Bokeh graphs are dynamic in nature means you can interact with the generated graph. See the below examples…
Installation ????:
Python Bokeh can be easily installed using PIP. You can install the Python Bokeh easily by running the command:
pip install bokeh
Now everything is ready let’s go through the examples ????♂️…
1. LinePlot
from bokeh.plotting import figure, show, output_notebook
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="{LinePlot Python Bokeh Example")
p.line(x, y, line_width=2)
output_notebook()
show(p)
Live Preview | Source Code | ???? Contribute
2. Scatter Plot
from bokeh.plotting import figure, show, output_notebook
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Scatter Plot Python Bokeh Example by PratikPathak.com")
p.circle(x, y, size=10, color="navy", alpha=0.5)
output_notebook()
show(p)
3. Bar Chart
from bokeh.plotting import figure, show, output_notebook
categories = ["A", "B", "C", "D", "E"]
values = [10, 15, 8, 12, 6]
p = figure(x_range=categories, title="Bar Chart Python Bokeh Example by PratikPathak.com")
p.vbar(x=categories, top=values, width=0.9)
output_notebook()
show(p)
4. Histogram
from bokeh.plotting import figure, show, output_notebook
import numpy as np
data = np.random.normal(0, 1, 1000)
p = figure(title="Histogram Python Bokeh Example by PratikPathak.com")
p.hist(data, bins=30, color="navy", alpha=0.5)
output_notebook()
show(p)
5. Pie Chart
from bokeh.plotting import figure, show, output_notebook
labels = ["A", "B", "C", "D"]
values = [10, 15, 8, 12]
p = figure(title="Pie Chart Python Bokeh Example by PratikPathak.com")
p.wedge(x=0, y=0, radius=0.4, start_angle=0.6, end_angle=2.6, color=["red", "green", "blue", "yellow"], legend_label="".join(labels))
output_notebook()
show(p)
Live Preview | Source Code | ???? Contribute
6. Time Series Plot
from bokeh.plotting import figure, show, output_notebook
from datetime import datetime, timedelta
start = datetime(2023, 1, 1)
end = start + timedelta(days=30)
x = [start + timedelta(days=i) for i in range((end-start).days)]
y = [10, 15, 8, 12, 6, 18, 9, 14, 7, 11, 5, 16, 8, 13, 6]
p = figure(x_axis_type="datetime", title="Time Series Plot Python Bokeh Example by PratikPathak.com")
p.line(x, y, line_width=2)
output_notebook()
show(p)
7. Linked Brushing
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
source = ColumnDataSource(data=dict(x1=x1, y1=y1, x2=x2, y2=y2))
p1 = figure(title="Scatter Plot 1")
p1.circle('x1', 'y1', source=source)
p2 = figure(title="Scatter Plot 2 Python Bokeh Example by PratikPathak.com")
p2.circle('x2', 'y2', source=source)
output_notebook()
show(p1, p2)
8. Hover Tooltips
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import HoverTool
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Hover Tooltips Python Bokeh Example by PratikPathak.com")
p.circle(x, y, size=15, fill_color="navy", line_color="white", alpha=0.5)
hover = HoverTool(tooltips=[("(x,y)", "(@x, @y)")])
p.add_tools(hover)
output_notebook()
show(p)
9. Annotations
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import Arrow, VectorRenderer, Label
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Annotations Python Bokeh Example by PratikPathak.com")
p.circle(x, y, size=15, fill_color="navy", line_color="white", alpha=0.5)
arrow = Arrow(x_start=2, y_start=4, x_end=3, y_end=5, line_width=2, line_color="red")
label = Label(x=3, y=6, text="This is a label", render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=0.5)
p.add_layout(arrow)
p.add_layout(label)
output_notebook()
show(p)
10. Custom Glyphs
from bokeh.plotting import figure, show, output_notebook
from bokeh.models.glyphs import Asterisk
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Custom Glyphs Python Bokeh Example by PratikPathak.com")
p.add_glyph(x, y, Asterisk(size=20, line_color="red", fill_color="yellow"))
output_notebook()
show(p)
Live Preview | Source Code | ???? Contribute
11. Gridlines and Axes
from bokeh.plotting import figure, show, output_notebook
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 3]
p = figure(title="Gridlines and Axes Python Bokeh Example by PratikPathak.com", x_range=(0, 6), y_range=(0, 8))
p.grid.grid_line_color = "grey"
p.grid.grid_line_dash = [6, 4]
p.xaxis.axis_label = "X-axis"
p.yaxis.axis_label = "Y-axis"
p.line(x, y, line_width=2)
output_notebook()
show(p)
12. Legend
from bokeh.plotting import figure, show, output_notebook
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
p = figure(title="Legend Python Bokeh Example by PratikPathak.com")
p.line(x1, y1, line_width=2, color="red", legend_label="Line 1")
p.line(x2, y2, line_width=2, color="blue", legend_label="Line 2")
p.legend.location = "top_left"
output_notebook()
show(p)
13. Categorical Plots
from bokeh.plotting import figure, show, output_notebook
fruits = ["Apples", "Pears", "Nectarines", "Plums", "Grapes", "Strawberries"]
counts = [5, 3, 4, 2, 4, 6]
p = figure(x_range=fruits, title="Categorical Plots Python Bokeh Example by PratikPathak.com")
p.vbar(x=fruits, top=counts, width=0.9)
p.xaxis.axis_label = "Fruit"
p.yaxis.axis_label = "Count"
p.xaxis.axis_label_text_font_size = "12pt"
p.yaxis.axis_label_text_font_size = "12pt"
output_notebook()
show(p)
14. Subplots
from bokeh.plotting import figure, show, output_notebook
from bokeh.layouts import gridplot
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
p1 = figure(title="Scatter Plot 1 Python Bokeh Example by PratikPathak.com")
p1.circle(x1, y1, size=10, color="navy", alpha=0.5)
p2 = figure(title="Scatter Plot 2 Python Bokeh Example by PratikPathak.com")
p2.circle(x2, y2, size=10, color="red", alpha=0.5)
grid = gridplot([[p1, p2]], plot_width=400, plot_height=400)
output_notebook()
show(grid)
15. Interactive Plots
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource, HoverTool, BoxSelectTool
import numpy as np
x = np.random.random(1000)
y = np.random.random(1000)
source = ColumnDataSource(data=dict(x=x, y=y))
p = figure(title="Interactive Plots Python Bokeh Example by PratikPathak.com", tools="hover,box_select")
p.circle('x', 'y', source=source, size=3, color="navy", alpha=0.5)
hover = HoverTool(tooltips=[("(x,y)", "(@x, @y)")])
p.add_tools(hover)
output_notebook()
show(p)
Live Preview | Source Code | ???? Contribute
16. Linked Panning and Zooming
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import Range1d
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
p1 = figure(title="Scatter Plot 1 Python Bokeh Example by PratikPathak.com", x_range=Range1d(0, 6), y_range=Range1d(0, 8))
p1.circle(x1, y1, size=10, color="navy", alpha=0.5)
p2 = figure(title="Scatter Plot 2 Python Bokeh Example by PratikPathak.com", x_range=p1.x_range, y_range=p1.y_range)
p2.circle(x2, y2, size=10, color="red", alpha=0.5)
output_notebook()
show(p1, p2)
17. Linked Axis Ranges
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import Range1d
x1 = [1, 2, 3, 4, 5]
y1 = [4, 5, 5, 7, 3]
x2 = [2, 3, 4, 5, 6]
y2 = [2, 4, 6, 8, 4]
p1 = figure(title="Scatter Plot 1", x_range=(0, 6), y_range=(0, 8))
p1.circle(x1, y1, size=10, color="navy", alpha=0.5)
p2 = figure(title="Scatter Plot 2", x_range=p1.x_range, y_range=p1.y_range)
p2.circle(x2, y2, size=10, color="red", alpha=0.5)
output_notebook()
show(p1, p2)
18. Datetime Axis
from bokeh.plotting import figure, show, output_notebook
from datetime import datetime, timedelta
start = datetime(2023, 1, 1)
end = start + timedelta(days=30)
x = [start + timedelta(days=i) for i in range((end-start).days)]
y = [10, 15, 8, 12, 6, 18, 9, 14, 7, 11, 5, 16, 8, 13, 6]
p = figure(x_axis_type="datetime", title="Datetime Axis Python Bokeh Example by PratikPathak.com")
p.line(x, y, line_width=2)
output_notebook()
show(p)
19. Heatmap
from bokeh.plotting import figure, show, output_notebook
import numpy as np
data = np.random.rand(10, 10)
p = figure(title="Heatmap Python Bokeh Example by PratikPathak.com")
p.image(image=[data], x=0, y=0, dw=10, dh=10, palette="Viridis256")
output_notebook()
show(p)
20. Streamgraph
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource
import numpy as np
# Generate some sample data
x = np.linspace(0, 10, 100)
y1 = np.cumsum(np.random.randn(100))
y2 = np.cumsum(np.random.randn(100))
y3 = np.cumsum(np.random.randn(100))
y4 = np.cumsum(np.random.randn(100))
y5 = np.cumsum(np.random.randn(100))
source = ColumnDataSource(data=dict(x=x, y1=y1, y2=y2, y3=y3, y4=y4, y5=y5))
p = figure(title="Streamgraph Python Bokeh Example by PratikPathak.com")
p.area(x='x', y1='y1', y2='y2', y3='y3', y4='y4', y5='y5', source=source, line_color=None)
output_notebook()
show(p)
Live Preview | Source Code | ???? Contribute
21. Polar Plot
from bokeh.plotting import figure, show, output_notebook
import numpy as np
r = np.linspace(0.1, 1, 10)
theta = np.linspace(0, 2*np.pi, 10)
p = figure(title="Polar Plot Python Bokeh Example by PratikPathak.com", plot_width=600, plot_height=600, x_range=(-1.2, 1.2), y_range=(-1.2, 1.2), toolbar_location=None)
p.polar(r, theta, color="navy", alpha=0.5, line_width=2)
output_notebook()
show(p)
22. Donut Chart
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource
labels = ["A", "B", "C", "D"]
values = [10, 15, 8, 12]
source = ColumnDataSource(data=dict(labels=labels, values=values))
p = figure(title="Donut Chart Python Bokeh Example by PratikPathak.com", x_range=labels)
p.wedge(x=0, y=1, radius=0.4, start_angle=0.6, end_angle=2.6, color=["red", "green", "blue", "yellow"], legend_field="labels")
p.wedge(x=0, y=1, inner_radius=0.3, outer_radius=0.4, start_angle=0.6, end_angle=2.6, color="white")
p.axis.visible = False
p.grid.grid_line_color = None
output_notebook()
show(p)
23. Treemap
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import TreemapRenderer, ColumnDataSource
import pandas as pd
# Sample data
data = pd.DataFrame({
'label': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'],
'parent': ['', 'A', 'A', 'B', 'B', 'C', 'C', 'D'],
'value': [10, 5, 4, 3, 2, 1, 1, 1]
})
source = ColumnDataSource(data)
p = figure(title="Treemap Python Bokeh Example by PratikPathak.com")
treemap = TreemapRenderer(
source=source,
label='label',
parent='parent',
value='value',
color_discrete_sequence=["#e6550d", "#3182bd", "#31a354", "#756bb1", "#636363", "#9e9ac8", "#de2d26", "#fd8d3c"],
)
p.add_layout(treemap)
output_notebook()
show(p)
24. Network Plot
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource, HoverTool, NodesAndLinkedEdges
import networkx as nx
# Sample data
nodes = ['A', 'B', 'C', 'D', 'E', 'F']
edges = [('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F')]
G = nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)
node_positions = nx.spring_layout(G)
node_x = [node_positions[node][0] for node in G.nodes()]
node_y = [node_positions[node][1] for node in G.nodes()]
node_color = ['red', 'green', 'blue', 'yellow', 'purple', 'orange']
source = ColumnDataSource(data=dict(
x=node_x,
y=node_y,
color=node_color,
node=nodes
))
p = figure(title="Network Plot Python Bokeh Example by PratikPathak.com", x_range=(-1.1, 1.1), y_range=(-1.1, 1.1))
p.add_tools(HoverTool(tooltips=[("Node", "@node")]))
p.circle('x', 'y', size=15, color='color', source=source)
edge_x = []
edge_y = []
for start, end in edges:
x0, y0 = node_positions[start]
x1, y1 = node_positions[end]
edge_x.append(x0)
edge_x.append(x1)
edge_x.append(None)
edge_y.append(y0)
edge_y.append(y1)
edge_y.append(None)
p.multi_line(edge_x, edge_y, color="black", alpha=0.5, line_width=1)
output_notebook()
show(p)
25. Sankey Diagram
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import Sankey, ColumnDataSource
# Sample data
flows = [
('A', 'X', 5),
('B', 'X', 3),
('A', 'Y', 2),
('B', 'Y', 4),
('X', 'C', 4),
('X', 'D', 3),
('Y', 'C', 2),
('Y', 'D', 4)
]
source = ColumnDataSource(data=dict(
source=[flow[0] for flow in flows],
target=[flow[1] for flow in flows],
value=[flow[2] for flow in flows]
))
p = figure(plot_width=800, plot_height=400, title="Sankey Diagram Python Bokeh Example by PratikPathak.com")
sankey = Sankey(source=source, label_text_color="white", label_text_font_size="8pt")
p.renderers.append(sankey)
output_notebook()
show(p)
Live Preview | Source Code | ???? Contribute
26. Chord Diagram
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource, CategoricalColorMapper
import numpy as np
# Sample data
nodes = ['A', 'B', 'C', 'D', 'E', 'F']
connections = [
('A', 'B', 0.5), ('A', 'C', 0.3), ('A', 'D', 0.2),
('B', 'C', 0.4), ('B', 'D', 0.3), ('B', 'E', 0.3),
('C', 'D', 0.2), ('C', 'E', 0.3), ('C', 'F', 0.5),
('D', 'E', 0.2), ('D', 'F', 0.3), ('E', 'F', 0.4)
]
source = ColumnDataSource(data=dict(
start=np.array([con[0] for con in connections]),
end=np.array([con[1] for con in connections]),
value=np.array([con[2] for con in connections])
))
p = figure(title="Chord Diagram Python Bokeh Example by PratikPathak.com", plot_width=800, plot_height=800)
chord = p.chord(
source=source,
start_angle=np.pi / 2,
direction="clockwise",
colors=CategoricalColorMapper(factors=nodes, palette="Spectral11")
)
output_notebook()
show(p)
How to Contribute?
Feel free to open a PR request on our GitHub repo.
Steps to contribute:
- Fork the repo
- Make changes in the Forked repo and save
- Open a Pull Request
- That’s it ????!
Conclusion
In this article I have shared you 25+ Python Bokeh examples which can help you to learn python bokeh. Feel free to contribute to our github repo and keep it updated.